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Abstract. We study several properties of distillation protocols to purify multilevel qubit states (qudits)
when applied to a certain family of initial mixed bipartite states. We find that it is possible to use qudits
states to increase the stability region obtained with the flow equations to distill qubits. In particular,
for qutrits we get the phase diagram of the distillation process with a rich structure of fixed points. We
investigate the large-D limit of qudits protocols and find an analytical solution in the continuum limit.
The general solution of the distillation recursion relations is presented in an appendix. We stress the notion
of weight amplification for distillation protocols as opposed to the quantum amplitude amplification that
appears in the Grover algorithm. Likewise, we investigate the relations between quantum distillation and
quantum renormalization processes.

PACS. 03.67.-a Quantum information – 03.67.Lx Quantum computation

1 Introduction

The experimental analysis of the intriguing properties of
entanglement in quantum mechanics requires the avail-
ability of stable sources of entanglement. Despite the nice
properties exhibited by entanglement, it has the odd be-
haviour of degrading by the unavoidable contact with the
external environment. Thus, for the entanglement to be
assessed as a precious mean, we must devise some method
to pump it up to the entanglement source in order to sus-
tain a prescribed degree of entanglement that we may need
whether for quantum communication protocols (telepor-
tation, cryptography, dense coding) or quantum comput-
ing (algorithmics) (for a review see [1,2] and references
therein).

Quantum distillation or purification protocols are pre-
cisely those methods, that have been devised to regen-
erate entanglement leakages of an entanglement source.
Here we are interested in the purification of mixed states
of bipartite type, having in mind the realization of a com-
munication protocol by two parties, Alice and Bob. The
seminal work of [3] has provided us with a standard distil-
lation method that has been the focus to developing more
protocols with the aim at improving its original perfor-
mances. We shall refer to this distillation protocol as the
BBPSSW protocol. There are feasible experimental pro-
posals for this type of protocols using polarization beam
splitters (PBS) [4]. Likewise, there also exist methods for
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the distillation of pure states [5] that have been imple-
mented experimentally [6].

In addition to the initial purpose for which the quan-
tum distillation protocols were devised, they have found
another very important application in connection to the
problem of quantum error correction: quantum informa-
tion needs to be protected from errors even more than
classical information due to its tendency to become deco-
herent. To avoid these errors, one can resort to the ideas
of quantum error correction codes [7,8] and fault-tolerant
quantum computation [9,10]. However, entanglement pu-
rification is another alternative to decoherence which gives
a more powerful way of dealing with errors in quantum
communication [11].

In a typical quantum communication experiment,
Alice and Bob are two spatially separated parties shar-
ing pairs of entangled qubits. The type of operations al-
lowed on these qubits are denoted as LOCC (local oper-
ations and classical communication): they comprise local
unitary operators UA ⊗ UB on each side, local quantum
measurements and communication of the measurement
results through a classical channel. These local quantum
operations will suffer from imperfections producing local
errors. Furthermore, Alice and Bob will also face trans-
mission errors in their quantum channels due to dissipa-
tion and noise. To overcome these difficulties, they will
have to set up an entanglement purification method. In
short, a protocol like the BBPSSW creates a reduced set
of maximally entangled pairs (within a certain accuracy)
out of a larger set of imperfectly entangled pairs: entan-
glement is created at the expense of wasting extra pairs.
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The degree of purity of a mixed entangled pair is mea-
sured in terms of its fidelity with respect to a maximally
entangled pure pair, which is the focus of the purification
protocol. After the BBPSSW protocol, a new distillation
protocol was introduced in [12] by the name of quantum
privacy amplification (QPA) which converges much faster
to the desired fidelity [13,14]. Other protocols known as
quantum repeaters [15,16] allow us to establish quantum
communication over long distances by avoiding absorption
or depolarization errors that scale exponentially with the
length of the quantum channel.

The advantages of dealing with D-dimensional or mul-
tilevel quantum states (qudits) instead of qubits are quite
apparent: an increase in the information flux through the
communication channels that could speed up quantum
cryptography, etc. [20–22]. Thus, it has been quite natural
to propose extensions of the purification protocols for qu-
dits. One of the proposals [17] relies on an extension of the
CNOT gate that is unitary, but not Hermitian. Recently,
another very nice proposal has been introduced [18,19]
based on a generalization of the CNOT gate that is both
unitary and Hermitian and gives a higher convergence.
In this paper, we make a study of the new purification
protocols of [18,19] when they are applied to mixed bi-
partite states of qudits that are not of the Werner form.
In this way, we combine some of the tools employed by
the QPA protocols [12] with the advantages of the new
methods.

This paper is organized as follows: in Section 2 we re-
view simple distillation protocols for qubits not in Werner
states and we generalize them for the purification of any
of the Bell states. In Section 3 we extend the previous
protocols to deal with multilevel qubits and obtain sev-
eral results like an improvement in the size of the stability
fidelity basin, analytical formulas for the distillation flows,
phase diagrams, etc. In Section 4 we apply the distillation
protocols for the purification of non-diagonal mixed states
that are more easily realized experimentally. In Section 5
we study the large-D limit of these protocols. In Section 6
we present a detailed investigation of the relationships be-
tween quantum distillation protocols and renormalization
methods for quantum lattice Hamiltonians. Section 7 is
devoted to conclusions. In Appendix A we find the gen-
eral solution for the distillation recursion relations used in
the text in the general case of qudits.

2 Simple distillation protocols with qubits

Our starting point is the orthonormal basis of Bell states
formed by the first qubit belonging to Alice and the second
to Bob:

|Φ±〉 :=
1√
2
[|00〉 ± |11〉]

|Ψ±〉 :=
1√
2
[|01〉 ± |10〉]. (1)

We shall use the word “simple” applied to the distillation
protocols to denote that the mixed state we shall be deal-
ing with is made up of a combination of one state in the
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Quantum Distillation

F ′ > F F ′ > F

Fig. 1. Schematic representation of the distillation protocol by
Alice and Bob. Originally, two pairs of shared entangled qubits
represented by enclosed dots are transformed into a single pair
of higher purity (doubly enclosed dots).

set S := {|Φ+〉, |Φ−〉} of Bell states that have coincident
bits in Alice’s and Bob’s qubits, with another state in the
set A := {|Ψ+〉, |Ψ−〉} of Bell states that do not have co-
incidences. Thus, we have 4 possible combinations to do
this type of entanglement distillation.

To begin with, we shall choose the following mixed
state in order to set up a simple distillation protocol

ρ++ := F |Φ+〉〈Φ+| + (1 − F )|Ψ+〉〈Ψ+|. (2)

Alice and Bob will also need to apply the CNOT gate
defined as usual

UCNOT|i〉|j〉 := |i〉|i ⊕ j〉, i, j = 0, 1. (3)

The distillation protocol can be arranged into a set of
5 instructions or steps [3,12,14]:

Distillation protocol for qubits

1. set up ρ −→ ρ ⊗ ρ with fidelity F ;
2. apply bilateral CNOT gate: UBCNOT;
3. Alice and Bob measure target qubits;
4. classical communication of results: retain coincidences

(0A0B or 1A1B);
5. go to step 1) with ρ′ with fidelity F ′ > F .

The simplicity of this protocol also relies on the fact
that we do not need any depolarization step, as it is the
case when dealing with Werner states [3]. In Figure 1 we
show a schematic picture of a single application of the pu-
rification method. Let us comment on the outcomes corre-
sponding to the most relevant steps in this protocol. After
step 1, the 4-quit mixed state ρ ⊗ ρ shared by Alice and
Bob reads as follows

ρ++ ⊗ ρ++ = F 2|Φ+Φ+〉〈Φ+Φ+|
+ F (1 − F )[|Φ+Ψ+〉〈Φ+Ψ+|
+ |Ψ+Φ+〉〈Ψ+Φ+|]
+ (1 − F )2|Ψ+Ψ+〉〈Ψ+Ψ+|. (4)
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Table 1. This table shows the results of applying the bilateral
CNOT gate to certain pairs of Bell states needed to distillation.

|ϕA〉|ϕB〉 UBCNOT|ϕA〉|ϕB〉
|Φ+〉|Φ+〉 |Φ+〉|Φ+〉
|Φ+〉|Ψ+〉 |Φ+〉|Ψ+〉
|Ψ+〉|Φ+〉 |Ψ+〉|Ψ+〉
|Ψ+〉|Ψ+〉 |Ψ+〉|Φ+〉

In step 2, Alice and Bob apply bilaterally the CNOT gate
taking their first qubit as source and their second qubit as
target, i.e., qubits first and third are source qubits while
qubits second and fourth are target qubits. To obtain the
transformed mixed state we must determine the action of
the bilateral CNOT gate UBCNOT [3] on the states of the
form |ϕAϕB〉. The results of this computation are shown
in Table 1. With the help of this table we find

UBCNOTρ++ ⊗ ρ++UBCNOT = F 2|Φ+Φ+〉〈Φ+Φ+|
+ F (1 − F )[|Φ+Ψ+〉〈Φ+Ψ+|
+ |Ψ+Ψ+〉〈Ψ+Ψ+|]
+ (1 − F )2|Ψ+Φ+〉〈Ψ+Φ+|. (5)

After steps 3 and 4, Alice and Bob measure their target
qubits and retain their source qubit whenever they find,
via classical communication, the same results: either 0A0B

or 1A1B. This fact selects the state |Φ+〉 as the only admis-
sible possibility for the target state. Thus, only the first
and third terms in the RHS of (5) survive to this process
and the resulting 2-qubit state ρ′++ is again of the same
form as the original starting state (2) in step 1, but with
a higher fidelity F ′ > F . In fact, we get

ρ′++ := F ′|Φ+〉〈Φ+| + (1 − F ′)|Ψ+〉〈Ψ+| (6)

with the new fidelity being

F ′ =
F 2

F 2 + (1 − F )2
· (7)

This relation defines a recursion scheme for entanglement
purification: starting with say NP pairs of Bell states of
fidelity F , after every application of the whole protocol we
obtain NP /2 pairs of higher fidelity F ′ > F . Thus, purifi-
cation is achieved at the expense of halving the number
of Bell pairs. The fixed points Fc of the recursion rela-
tion (7) are defined as F ′(Fc) := Fc and they are given by
Fc = 0, 1

2 , 1. The fixed points Fc = 0, 1 are stable, while
Fc = 1

2 is unstable. The best way to recast these quali-
tative properties of the flow equation for the fidelities (7)
is to draw the corresponding flow diagram as shown in
Figure 2.

Next, we may wonder whether it is possible to devise
distillation protocols for the three possible combinations
of Bell states, namely,

ρ+− := F |Φ+〉〈Φ+| + (1 − F )|Ψ−〉〈Ψ−|
ρ−+ := F |Φ−〉〈Φ−| + (1 − F )|Ψ+〉〈Ψ+|
ρ−− := F |Φ−〉〈Φ−| + (1 − F )|Ψ−〉〈Ψ−|. (8)

0 1

Fc

1
2

F

Fig. 2. Flow diagram for the fidelity F of the distillation pro-
tocol given by the recursion relation (7).

We can answer this question affirmatively by computing
the action of the bilateral CNOT gate on the tensor prod-
uct of these mixed states (8). With a similar analysis which
has led us to Table 1 [3], we obtain

UBCNOTρ+− ⊗ ρ+−UBCNOT = F 2|Φ+Φ+〉〈Φ+Φ+|
+ F (1 − F )[|Φ−Ψ−〉〈Φ−Ψ−|
+ |Ψ−Ψ+〉〈Ψ−Ψ+|]
+ (1 − F )2|Ψ+Φ−〉〈Ψ+Φ−|,

UBCNOTρ−+ ⊗ ρ−+UBCNOT = F 2|Φ+Φ−〉〈Φ+Φ−|
+ F (1 − F )[|Φ−Ψ+〉〈Φ−Ψ+|
+ |Ψ−Ψ−〉〈Ψ−Ψ−|]
+ (1 − F )2|Ψ+Φ+〉〈Ψ+Φ+|,

UBCNOTρ−− ⊗ ρ−−UBCNOT = F 2|Φ+Φ−〉〈Φ+Φ−|
+ F (1 − F )[|Φ+Ψ−〉〈Φ+Ψ−|
+ |Ψ+Ψ−〉〈Ψ+Ψ−|]
+ (1 − F )2|Ψ+Φ−〉〈Ψ+Φ−|. (9)

We now realize that if we proceed to measure the target
bits and classical communicate the results, we do not end
up with the same type of mixed state as we had started
with. That is, the protocol as it stands is not valid since it
does not yield invariant mixed states. This problem has a
solution provided we introduce an additional step prior to
the measurement of the target qubits by Alice and Bob.
This additional step corresponds to a local unitary op-
eration UA ⊗ UB performed by Alice and Bob on their
source qubits. The form of this local unitary depends on
the mixed state we are distilling. We find the following
results.

Step 2′. Alice and Bob apply a local unitary transfor-
mation UA ⊗ UB to their source qubits:
for ρ+−, UA = 1

2 (1 + i)(σx + σy), UB = 1
2 (1− i)(σx − σy);

for ρ−+, UA = UB = 1
2 (1 + i)(σx + σy);

for ρ−−, UA = σz, UB = 1.
After this extra step, we can guarantee that the result-

ing 4-qubit mixed state has the appropriate Bell pairs at
the source qubits so as to produce the same original state,
once steps 3 and 4 are performed. Moreover, it is straight-
forward to prove that the new fidelity for these 3 protocols
is also given by the same recursion relation (7) as in the
first protocol.

Finally, if the constraint that the state of fidelity F
must be a Φ± state is relaxed, then there are two addi-
tional possible mixed states whose analysis can be carried
out in a similar fashion.
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3 Multilevel extensions of distillation
protocols

In order to generalize the simple distillation protocol of
the previous section to the case of qudits, we must notice
that the two main ingredients in that distillation protocol
are:

(i) the CNOT gate,
(ii) the Bell states (1).

Regarding the CNOT gate, the extension of this gate
to deal with qudits is not unique. As has been noted
in [18,19], the CNOT gate for qubits (3) has 3 proper-
ties that make it special, namely

U †
CNOT = U−1

CNOT,

U †
CNOT = UCNOT,

i ⊕ j = 0 ⇔ i = j. (10)

The extension of the CNOT gate for qudits that satisfies
these 3 properties (10) is given by [18,19]

UCNOT|i〉|j〉 := |i〉|i � j〉, i, j = 0, ..., D − 1 (11)

where i � j := i − j, mod D, denotes substraction modu-
lus D. This is the definition that we shall adopt through-
out this paper, unless otherwise stated.

As for the higher-dimensional extension of Bell
states (1), we shall also take the following generaliza-
tion [18,19]

|Ψkj〉 := UCNOT [(UF|k〉) ⊗ |j〉] , k, j = 0, ..., D − 1 (12)

where UF is the quantum Fourier transform (QFT)

UF|k〉 :=
1√
D

D−1∑
y=0

e
2πiky

D |y〉, (13)

which reduces to the Hadamard gate when dealing with
qubits (D = 2). As a matter of fact, we can readily check
that for the special case of qubits D = 2 we recover the
standard Bell pairs (1) in the following form

|Ψ00〉 = |Φ+〉, |Ψ01〉 = |Ψ+〉,
|Ψ10〉 = |Φ−〉, |Ψ11〉 = |Ψ−〉. (14)

Moreover, using the generalized CNOT gate (11), the gen-
eralized Bell states are given by

|Ψkj〉 =
1√
D

D−1∑
y=0

e
2πiky

D |y〉|y � j〉. (15)

With these extensions of the CNOT gate and the Bell
states, we can set up a generalization of the simple distil-
lation protocols of Section 2 for qudit states. These pro-
tocols have the same 5 steps as before.

Step 1. We shall assume a general diagonal mixed
state of the form

ρ :=
D−1∑
k,j=0

qkj |Ψkj〉〈Ψkj |,

1 =:
D−1∑
k,j=0

qkj , (16)

where qkj are normalized probabilities. For non-diagonal
mixed states, we refer to Section 4. Then, Alice and Bob
share pairs ρ × ρ of these states (16).

Step 2. Alice and Bob apply bilaterally the general-
ized CNOT gate (11). To know the result of this oper-
ation on the state (16) we need a previous result about
the action of the gate UBCNOT on pairs of generalized Bell
states (12). After some algebra, we arrive at the following
expression

UBCNOT|Ψkj〉|Ψk′j′〉 = |Ψk⊕k′,j〉|ΨD�k′,j�j′ 〉. (17)

This is a fundamental result for it means that the space
of two-pairs of generalized Bell states is invariant under
the action of the generalized bilateral CNOT gate. This
is a very nice result that condenses in a single formula
all the possibilities for the outcome of the action of the
CNOT gates on Bell states, in particular, the whole table
employed by Bennett et al. in [3] for the case of qubits
is contained in equation (17). This property is essential
in order to have a closed distillation protocol. Actually, it
would have been enough to have obtained only the source
qubits as generalized Bell states.

Then, with the help of this property (17) we obtain
the action of UBCNOT on pairs of ρ states, as follows

UBCNOTρ ⊗ ρUBCNOT =
D−1∑
k,j=0

D−1∑
k′,j′=0

qk�k′,jqk′j′

× |ΨkjΨD�k′,j�j′ 〉〈ΨkjΨD�k′,j�j′ |. (18)

We see that this state is already of the same form in the
source qubits as the original ρ (16).

Step 3. Alice and Bob measure their target qubits
in (18). To see the result of this measurement, let us write
the explicit form of the target qubits, namely

ΨD�k′,j�j′ =
1√
D

D−1∑
z=0

e
−2πik′z

D |z〉|z � (j � j′)〉. (19)

Therefore, coincidences between Alice’s and Bob’s target
qubits will happen only when the following condition is
satisfied

z = z � (j � j′) ⇐⇒ j = j′. (20)

Step 4. After their measurement, Alice and Bob com-
municate classically their result so that they retain the re-
sulting source Bell pairs only when they have coincidences,
and discard them otherwise. The resulting net effect of this
process is to produce a Kronecker delta function δjj′ in the
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target qubits. More precisely, the resulting unnormalized
mixed state is given by

ρ′ ∼
D−1∑
k,j=0

D−1∑
k′,j′=0

qk�k′,jqk′j′δjj′ |Ψkj〉〈Ψkj |. (21)

Therefore, we end up with a diagonal mixed state of the
same form as the starting one

ρ′ =
D−1∑
k,j=0

q′kj |Ψkj〉〈Ψkj | (22)

with the new probabilities given by

q′kj =
∑D−1

k′=0 qk�k′,jqk′j∑D−1
k,j=0

∑D−1
k′=0 qk�k′,jqk′j

· (23)

This is a generalized recursion relation that includes equa-
tion (7) as a particular instance.

Step 5. Alice and Bob start all over again the same
process with the initial state now being ρ′ in (22, 23).

The nice feature of these generalized distillation pro-
tocols for dealing with qudits is the fact that we have at
our disposal explicit analytical formulas (23) for the evo-
lution (flow) of the different weights (probabilities) of the
generalized mixed states to be purified. As these distilla-
tion protocols are too general, it is worthwhile to consider
some particular cases of interest separately. The general
solution to the distillation recursion relations (23) is pre-
sented in Appendix A. We hereby provide the following
analysis of some examples.

(i) Let us investigate the closest generalization of the
simple protocols introduced in Section 2. Thus, let us con-
sider the following type of initial mixed state

ρ :=
M∑
i=0

qi|Ψ0i〉〈Ψ0i|, M ≤ D − 1,

1 =:
M∑
i=0

qi, qi ≥ 0. (24)

This corresponds to working with the subset of all possi-
ble generalized Bell states of the form {|Ψ0i〉}D−1

i=0 . Inter-
estingly enough, this includes the case of the state ρ++

in (2) for D = 2. The recursion relations (23) for this
special subset of states takes the following simpler form

q′i =
q2
i∑M

j=0 q2
j

· (25)

For M = 2, i.e., considering a mixed state formed of just
two Bell states of the form |Ψ0i〉, the protocol has the
following recursion relation

q′i =
q2
i

q2
i + (1 − qi)2

, (26)

where here the index i stands for any possible pair of Bell
states of the type |Ψ0i〉. In other words, we have found
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Fig. 3. Plots of the distilled fidelities F ′ as a function of the
original fidelity F for several values of the dimension D of the
qudits: D = 2, 4, 10.
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Fig. 4. Flow diagram for the fidelity F of the generalized distil-
lation protocol for qudits given by the recursion relation (27).

a direct D-dimensional generalization of the distillation
protocols for qubits in Section 2, with qi := F .

(ii) For M = D − 1 and taking q0 := F and qi :=
1−F
D−1 , i = 1, ..., D − 1 we can find a more advantageous
protocol than the previous one. In fact, in this case we
find that

q′0 := F ′ =
F 2

F 2 +
(1 − F )2

D − 1

· (27)

The fixed points of this recursion relation are now given
by Fc = 0, 1/D, 1. Despite being a non-linear recursion
relation, (27) admits an explicit analytical solution for the
general term of the series Fk given by

Fk =
F (2k)

F (2k) + (D − 1)
[

1 − F

D − 1

](2k)
, k ≥ 1, F0 := F.

(28)
From this solution, we immediately find that the fixed
points Fc = 0, 1 are stable while Fc = 1/D is unstable.

In Figure 3 we plot the function F ′ = F ′(F ) for sev-
eral values of the dimension D. From the analysis of these
curves we immediately obtain the corresponding flow di-
agram that we represent in Figure 4. We check that for
D = 2 we recover the flow diagram corresponding to stan-
dard qubits (Fig. 2).

We see from Figure 4 that the stability basin is in-
creased with respect to the case of standard qubits, as in
Figure 2. This means that we can start with a mixed state
having a fidelity F with respect to the Bell state |Ψ00〉
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lower that 1
2 and we still will succeed in purifiying that

state towards fidelity close to 1. Thus, we have found that
it is more advantageous to distill a given Bell state |Ψ00〉
if we prepare the mixed state ρ in (24) in the form

ρ := F |Ψ00〉〈Ψ00| + 1 − F

D − 1

D−1∑
i=1

|Ψ0i〉〈Ψ0i|, (29)

rather than using just one single of those states

ρ := F |Ψ00〉〈Ψ00| + (1 − F )|Ψ0i〉〈Ψ0i|, i �= 0. (30)

We may wonder how is it likely for Alice and Bob to obtain
the same values (coincidences) after measuring the target
qudits in the step 3 of the distillation protocol. Let us
denote by PAB this probability which will depend on the
value F of the fidelity. From equations (21) and (27) we
find this probability of coincidences to be

PAB(F ) = F 2 +
(1 − F )2

D − 1
· (31)

The minimum of this probability is at F0 = 1/D and its
value is PAB(1/D) = 1/D. Likewise, PAB(1) = 1. Thus,
we find that the probability is lower and upper bounded
as 1/D ≤ PAB(F ) ≤ F for F ∈ [1/D, 1].

One is also interested in knowing the number of
steps K(ε, F0) needed to achieve a certain final fidelity
close to 1, say 1 − ε, starting from an appropriate initial
fidelity F0 > 1/D. This number can be computed from
our analytical solution (28) from the condition

FK(ε,F0) := 1 − ε. (32)

Thus, we find the following analytical formula for the num-
ber of steps needed to obtain a certain degree of fidelity ε
as a function of the initial fidelity F0 > 1/D, i.e.,

K(ε, F0) =




log2




ln(
ε

(1 − ε)(D − 1)
)

ln(
1 − F0

(D − 1)F0
)





· (33)

In Figure 5 we plot the number of iterations (33) for a
given value of the final fidelity 1 − ε that we take as the
fixed value of 0.99, and then we find how is the depen-
dence on the initial fidelity F0. We see that for a given
admissible value of F0, the lowest number of iterations
corresponds to the protocol with the higher value of the
qudits dimension D:

K(ε0, F0)D1 ≥ K(ε0, F0)D2 , for D1 > D2. (34)

(iii) For qutrits, D = 3, the most general diagonal mixed
state with the allowed Bell states taking values on the
set {|Ψ0i〉} is

ρ := q0|Ψ00〉 + q1|Ψ01〉 + q2|Ψ02〉
1 =: q0 + q1 + q2. (35)
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Fig. 5. Plot of the number of iterations K(ε, F0) (33) to achieve
a final fidelity of F = 0.99 as a function of the initial fidelity F0

and for several values of the dimension D of the qudits: D =
2, 4, 10.
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Fig. 6. The desired fidelity q′0 for amplification after a single
application of the distillation protocol for qutrits (36) as a
function of the previous fidelities q0, q1.

Let us assume that the state we want to purify is |Ψ00〉.
Now, our recursion relation for our fidelity q0 depends on
two variables, namely,

q′0 =
q2
0

q2
0 + q2

1 + (1 − q0 − q1)2
, (36)

and a similar equation for q1 with q0 ↔ q1. In Figure 6
the dependence of the function fidelity q′0 = q′0(q0, q1) for
qutrits is plotted. We observe that it is a monotonous in-
creasing function which guarantees that the initial fidelity
will flow towards 1, under certain conditions. To find these
conditions, we find that the set of fixed points of these re-
cursion relations is given by

(q0, q1)c = {(0, 0), (1
2 , 0), (0, 1

2 ), (1
3 , 1

3 ), (1
2 , 1

2 ), (1, 0), (0, 1)}.
We have also found the flow diagram associated to
these recursion relations which is now two-dimensional
and we show it in Figure 7. From this diagram we see
that the purification protocol is successful in arriving
to the maximum fidelity q0 = 1 provided the initial fi-
delity lies in the stability basin of the fixed point (1, 0)
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(0, 0) ( 1
2
, 0) (1, 0)

( 1
2
, 1

2
)

(0, 1)

(0, 1
2
)

q0

q1

Fig. 7. Two-dimensional flow diagram associated to the dis-
tillation protocol for qutrits (36).

which is given by the trapezoid formed by the set of
points (1

2 , 1
2 ), (1

3 , 1
3 ), (1

2 , 0), (1, 0).

4 Distillation of non-diagonal mixed states

So far, we have been investigating the properties of distil-
lation protocols applied to mixed bipartite state of diago-
nal form such as those in (22, 23). It is apparent that once
we have a general result for the operation of the UBCNOT

gate of generalized Bell states (17), we can also deal with
non-diagonal mixed states, namely,

ρ :=
D−1∑
k,j=0

D−1∑
k′,j′=0

qkjk′j′ |Ψkj〉〈Ψk′j′ |,

1 =:
D−1∑
k,j=0

D−1∑
k′,j′=0

qkjk′j′ , qkjk′j′ ≥ 0. (37)

Since this is a too much general state, we prefer to extract
from this class of non-diagonal states one type which we
believe it may have potential applications.

Let us imagine that Alice and Bob are manipulating
bipartite qudit states that are diagonal in the computa-
tional basis. More explicitly, the entangled state they want
to purify is of the form

|Ψd〉 :=
1√
D

D−1∑
i=0

|ii〉, (38)

while states which are non-diagonal are considered as act-
ing as disturbing noise that they want to get rid of. Specif-
ically, this noise will be represented by the state

|Ψo〉 :=
1√

D(D − 1)

D−1∑
i�=j=0

|ij〉. (39)

Then, in order to achieve their goal of purifying states of
the diagonal form |Ψd〉 with respect to non-diagonal states

|Ψo〉, they set up a distillation protocol based on sharing
copies of the following mixed state

ρ := F |Ψd〉〈Ψd| + (1 − F )|Ψo〉〈Ψo|. (40)

We envisage that this scenario is physically feasible since
we can imagine that the computational basis is real-
ized in terms of some physical property taking values on
i = 0, ..., D− 1 and that Alice and Bob have a mechanism
to select when they have |ii〉 coincident qudits (or diag-
onal) from |ij〉 non-coincident qubits (non-diagonal). Let
us point out that the scenario mentioned here has recently
appeared in the experiments that obtain entangled pairs
of multilevel qubits in terms of the orbital angular momen-
tum (OAM) of photons. This is the physical realization of
the qudits. As for the particular structure shown by the
state |Ψd〉 that we choose to distill here, it has the form of
the entangled state in those experiments. The reason for
this comes from the fact that in order to achieve entangle-
ment between pairs of photon’s OAM states, the authors
in reference [27] have to resort to the conservation of an-
gular momenta between the pairs, and this is the fact that
links the components of the angular momenta for each pair
in a form like that in equation (38).

To proceed with the distillation of the state ρ in (40),
we first must express the states |Ψd〉 and |Ψo〉 in the basis
of the generalized Bell states, with the result

|Ψd〉 = |Ψ00〉,

|Ψo〉 =
1√

D − 1

D−1∑
i=1

|Ψ0i〉. (41)

Next, Alice and Bob share two pairs of non-diagonal mixed
states

ρ ⊗ ρ = F 2|Ψ00Ψ00〉〈Ψ00Ψ00|

+
F (1 − F )

D − 1

D−1∑
i,j=1

[|Ψ00Ψ0i〉〈Ψ00Ψ0j | + |Ψ0iΨ00〉〈Ψ0jΨ00|]

+
(1 − F )2

(D − 1)2

D−1∑
i,j,k,l=1

|Ψ0iΨ0k〉〈Ψ0jΨ0l|, (42)

and they apply bilaterally the CNOT gate to it (17) with
the result

UBCNOTρ ⊗ ρUBCNOT = F 2|Ψ00Ψ00〉〈Ψ00Ψ00|

+
F (1 − F )

D − 1

D−1∑
i,j=1

[|Ψ00Ψ0,�i〉〈Ψ00Ψ0,�j | + |Ψ0iΨ0i〉〈Ψ0jΨ0j |]

+
(1 − F )2

(D − 1)2

D−1∑
i,j,k,l=1

|Ψ0iΨ0i�k〉〈Ψ0jΨ0j�l|. (43)

The process of measuring the target qudits and retain-
ing the source qudits when upon classical communication
Alice and Bob find coincidences in their measures amounts
to retaining the terms in (43) that have the state |Ψ00〉 in
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the target qudits. This means that only the first term and
part of the last term in (43) contribute to the final source
mixed state, which takes the following form without nor-
malization

ρ′ ∼ F 2|Ψ00〉〈Ψ00| + (1 − F )2

(D − 1)2

(
D−1∑
i=1

|Ψ0i〉
)
D−1∑

j=1

〈Ψ0j |



= F 2|Ψ00〉〈Ψ00| + (1 − F )2

D − 1
|Ψo〉〈Ψo|. (44)

Upon normalization, we arrive again at a non-diagonal
mixed state of same form as the one we started with ρ′ =
F ′|Ψd〉〈Ψd| + (1 − F ′)|Ψo〉〈Ψo|, but with a new fidelity F ′
given by

F ′ =
F 2

F 2 +
(1 − F )2

D − 1

· (45)

Let us notice that this is precisely the same recursion rela-
tion that we found in Section 3 in a different context (27).

5 Continuum limit of qudit protocols

For the general case represented by the recursion rela-
tions (25) we can also find the general solution for the kth
iteration q

(k)
i , i = 0, ..., D−1 starting from their initial val-

ues q
(0)
i satisfying

∑D−1
i=0 q

(0)
i := 1. We find the following

solution

q
(k)
i =

[
q
(0)
i

]2k

∑M
j=0

[
q
(0)
j

]2k · (46)

Let us assume that the maximum initial value is M :=
max {q(0)

i } and it is p times degenerate. Then, using the
general solution (46) we can immediately find the fixed
points after the evolution with the recursion relations. We
find

lim
k→∞

q
(k)
i = 0, if q

(0)
i < M,

lim
k→∞

q
(k)
i =

1
p
, if q

(0)
i = M. (47)

From the analysis of these distillation protocols and the
way they operate we arrive at the conclusion that they
resemble a sort of amplitude amplification quite similar
to what happens in the Grover algorithm where there
exists what is called quantum amplitude amplification.
However, there is an important distinction between both
procedures: in the distillation method, the maximum am-
plification is attained asymptotically, while in Grover al-
gorithm it is achieved periodically. The reason for this
difference relies on the fact that the distillation process
is not unitary (since we make measurements and discard
states), while Grover is unitary. Thus, we propose to refer
to the distillation protocol as weight amplification, since
it is certain probability weights of the initial mixed states,
and not amplitudes, what are being amplified.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

�

����$�%

Fig. 8. Evolution of the probability density under the itera-
tive application of the distillation protocol in the continuum
limit (49). Starting with a parabolic distribution k = 0, we
show the resulting profiles after steps k = 1, 2, ..., 6.

When D is very large, we can approximate the prob-
ability weights q

(0)
i taking values on the discrete set

{0, 1, ..., D − 1} � i, by a density function q(x)(0) de-
fined on the real interval [0, 1]. This is achieved by in-
troducing the variable x ∈ [0, 1] defined as x := i∆x with
∆x := 1/(D − 1). Thus, in the limit D → ∞(∆x → 0),
we get a probability density as q

(0)
i (i∆x) → q(0)(x)dx. It

is also normalized as∫ 1

0

q(0)(x)dx = 1. (48)

Likewise, we can take the continuum limit of the general
recursion equation (46) in order to obtain the probability
density q(x)(k) after k steps of the distillation protocol.
This is given by

q(k)(x) =

[
q(0)(x)

]2k

∫ 1

0

[
q(0)(y)

]2k

dy
· (49)

This is a closed analytical equation that provides us
with the evolution of the probability density for any ini-
tial probability profile q(0)(x). In Figure 8 we plot this
evolution for an initial distribution of a parabolic form
q(0)(x) = 6(x− x2). We see how as we increase the step k
of the distillation, the new distributions get peaked around
the highest value of the initial distribution, which is x = 1

2
in this particular case. This behaviour illustrates the idea
of the weight amplification and is in agreement with the
results (47) for the fixed points of the flow equations.

6 Quantum distillation and quantum
renormalization

It is interesting to notice the analogy between the recursive
distillation process represented by the equation (7) and
Figure 2 and the truncation process in the renormalization
group analysis of certain quantum lattice Hamiltonian
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Table 2. Summary of the comparative analysis between the
quantum distillation process and a quantum renormalization
group method for lattice Hamiltonians.

Quantum distillation Quantum RG
Mixed state ρ Quantum Hamiltonian H

Computational basis Local site basis
Bell basis Energy basis

Alice & Bob tensor product Blocking method
L.O.C.C. Truncation operator

Maximum fidelity Minimum energy
RG-Flow diagram Distillation-flow diagram

Fig. 9. Block decomposition of the Heisenberg chain in 3-site
blocks.

models, specifically, the ITF model (ising in a transverse
field) [24,25]. The basic idea of a QRG method is: i/ elimi-
nation of high energy states plus, ii/ iterative process. This
is precisely what happens in a quantum distillation process
which we have seen in the preceding sections, achieving a
purification of a mixed state by means of discarding states
and a recursive procedure. This relationship can be made
even closer if we briefly recall what a quantum renormal-
ization group (QRG) method is. The subject of the dis-
tillation is a mixed state operator ρ, while that of the
renormalization is a quantum Hamiltonian operator H . A
summary of these relations is presented in Table 2 that
will be deduced along the way. The easiest way to present
the QRG method is with an example of quantum lattice
Hamiltonian like the isotropic Heisenberg model on a 1D
chain:

H = J
N∑

i=0

Si · Si+1, (50)

with Si spin- 1
2 operators at site i of the chain. The lo-

cal site basis {|↓〉, | ↑〉} corresponds to the computational
basis {|0〉, |1〉}. Much like this latter basis is not enough
for doing the distillation, the local site basis needs to be
complemented with another type of basis. To see this, let
us start the RG process with the block decomposition of
the chain in blocks of nB = 3 sites as shown in Figure 9.
This blocking method in QRG corresponds to the tensor
product of Alice and Bob’s shared states at the beginning
of the distillation process, as shown in Figure 10. This is
to be compared with the similar iterative process in the
QRG method in Figure 11.

The block Hamiltonian is then

HB = J (S1 · S2 + S2 · S3)

=
J

2
[
(S1 + S2 + S3)2 − S2

2 − (S1 + S3)2
]
. (51)

The label B here stands for Block and not for Bob. The di-
agonalization of HB is straightforward using the Clebsch-
Gordan decomposition of the tensor product of 3 irre-

F0F0F0F0F0F0F0F0

F1F1F1F1

F2F2

F3

Fig. 10. Example of distillation process starting with 8 pairs
of mixed states for Alice (and the same amount for Bob). After
3 steps the original fidelity F0 is improved up to a final value
of F3 (we assume full success for simplicity).

Initial chain with 8 sites

QRG

Fig. 11. Example of renormalization QRG process for an ini-
tial chain with 8 sites in 3 steps (making blocks of 2 sites each).

ducible representations of spin S = 1
2 ,

1
2⊗1

2⊗ 1
2 = 1

2⊕ 1
2⊕ 3

2 · (52)

In particular, the ground state (GS) is given by

|⇑〉GS =
1√
6

[2| ↑↓↑〉 − | ↓↑↑〉 − | ↑↑↓〉] , (53)

which is a spin doublet (with a similar expression for the
other state | ⇓〉GS, with the spins reversed). This fact is
peculiar of the 3-site block and it is the main underlying
reason for using a block of that size in the QRG (this fact
is model dependent: for the ITF model, the blocking is
with nB = 2 sites [24,25], Fig. 11). In the energy basis,
the block Hamiltonian is diagonal and this corresponds
to the Bell basis for the mixed state ρ in the distillation
process.

Now, the truncation of states amounts to retaining the
state of lowest energy (doublet) and discarding the re-
maining 2 excited states. This reduction scheme is of the
form 23 = 8 −→ 2. This truncation corresponds to dis-
carding unwanted states of non-coincidences in the distil-
lation process. The new effective site is again a spin- 1

2 site
as shown in Figure 12. The RG-truncation is implemented
by means of a truncation operator O constructed from
the lowest energy eigenvalues of HB retained during the
renormalization process. In this example, O is constructed
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Fig. 12. QRG renormalization of HB.

from the lowest energy doublet in the Clebsch-Gordan de-
composition (52), namely (53). Similarly, in the distilla-
tion process we have that the tensor product of Alice and
Bob’s states can be decomposed into states with coinci-
dent qubits in the target, denoted by ρa

C (5), and states
with non-coincident qubits in the target, denoted by ρa

NC,
after the bilateral application of CNOT gates in the step 2
of the protocol (5), i.e.,

ρ̃AB ⊗ ρ̃AB =

(∑
a

ρa
C

)
+

(∑
a

ρa
NC

)
, (54)

where the sum in a runs over a certain number of mixed
states of 4 parties, and the tilde means application of
CNOT gates. Notice that this stage is similar to the
RG-stage represented by equation (52). As an illustration,
let us consider the simplest case of a qubit density matrix
in equation (2). Then, after the bilateral application of
CNOT gates we can decompose the resulting product of
density matrix as follows∑

a

ρa
C = F 2|Φ+Φ+〉〈Φ+Φ+| + (1 − F )2|Ψ+Φ+〉〈Ψ+Φ+|

∑
a

ρa
NC = F (1 − F )[|Φ+Ψ+〉〈Φ+Ψ+| + |Ψ+Ψ+〉〈Ψ+Ψ+|].

(55)

Next, an elimination process similar to the RG-truncation
is performed by means of LOCC operations (measure-
ments and classical communication) that retains only the
bipartite states embedded in the ρa

C states.
Then, the renormalization of the block Hamiltonian is

simply
HB′ = OHBO† = E0 = −J. (56)

In this example, the truncation operator O is a 2×23 non-
squared matrix formed out of the lowest energy eigenstate
in (53), namely,

O = | ↑′〉GS〈⇑| + | ↓′〉GS〈⇓|, (57)

where | ↑′〉, | ↓′〉 denote the new spin eigenstates for the
new spin operators S′ after the renormalization process.
Then, the renormalization of the left, middle and right
operators Sl,Sm,Sr goes as follows

S′
l = OSlO

† =
2
3
S′,

S′
r = OSrO

† =
2
3
S′,

S′
m = OSmO† = −1

3
S′. (58)

Sr Sl

r l

n

n

n + 1

n + 1

Fig. 13. QRG renormalization of the interblock Hamilto-
nian HBB .

We may check that the following sum rule is verified,∑
i=1,2,3 S′

i = O(
∑

i=1,2,3 Si)O† = S′ reflecting the fact
that the RG-method preserves the total spin.

Similarly, we could have expressed the state-
elimination of the distillation in previous sections in terms
of an truncation operator, say OD, such that the new
mixed state ρ′AB is obtained as

ρ′AB = OD(ρ̃AB ⊗ ρ̃AB)O†
D. (59)

For example, in the simple case of a qubit density matrix
in equation (2), the distillation truncation operator OD is
a 22 × 24 non-squared matrix, namely,

OD = 1s ⊗ O
(Φ+)
t , (60)

where 1s is the identity operator acting on the source
qubits of Alice and Bob (the first two qubits in our case),
while the second operator denotes the action of a trunca-
tion operator on the target qubits (the second two qubits
in our case). It’s action is given by

O
(Φ+)
t |Υ 〉 :=



(
F 2 + (1 − F )2

)− 1
2 , |Υ 〉 = |Φ+〉,

0, |Υ 〉 = |Φ−〉, |Ψ±〉.
(61)

Thus, this operator is essentially the bra mapping 〈Φ+|,
up to a normalization factor.

In the case of the quantum Hamiltonian, we still
need extra work since there are interaction links between
blocks (see Fig. 9). These are absent in the distillation
protocol. However, the renormalization of the interblock
Hamiltonian HBB follows also the same prescription as
in (56) and we arrive at

JSn
r · Sn+1

l
RG−−→ J

(
2
3

)2

S′
n · S′

n+1, (62)

where we denote by n and n+1 two successive blocks in the
original lattice (see Fig. 13) that become two successive
sites (see Fig. 12) in the new lattice after the renormal-
ization. We can collect all these steps in Table 3 [24,26].
This table should be contrasted with the similar table for
the distillation process that can be formed with the steps
explained in Section 2.
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Table 3. Steps of the quantum renormalization group method
(QRG) for lattice Hamiltonians.

1/ Block decomposition: H = HB + HBB .
2/ Diagonalization of HB .
3/ Truncation within each Block: O.
4/ Renormalization: H ′

B = OHBO†, H ′
BB = OHBBO†.

5/ Iteration: Go to 1/ with H ′ = H ′
B + H ′

BB.

The outcome of the RG-method is that we obtain the
correct RG-flow for the coupling constant J −→ 0, sig-
naling a gapless system plus an approximate estimation
for the ground state energy, which by means of the varia-
tional principle, it is an upper bound for the exact energy.
Therefore, the QRG is an energy minimization procedure.
Likewise, the purification process produces a protocol for
fidelity maximization along with a distillation-flow dia-
gram. This completes the relationship established in Ta-
ble 2 between quantum distillation and quantum renor-
malization.

7 Conclusions

The field of quantum distillation protocols has become
very active in the theory of quantum information due
to the central role played by entanglement in the quan-
tum communication procedures and its tendency to
degradation.

In this work we have been interested in several exten-
sions of the purification protocols when dealing with mul-
tilevel systems (qudits) instead of the more usual qubit
protocols. We have seen the various advantages of hav-
ing distillation methods for qudits systems as compared
with the simple case of qubits. We have also obtained the
general form of the solution to the distillation recursion
relations and several particular solutions have been stud-
ied explicitly. We have developed the relationship between
quantum distillation protocols and quantum renormaliza-
tion group methods, something which is interesting in it-
self and could serve as a guide for possible extension of
purification methods.

We would like to mention that the possibility of work-
ing with qudits systems has become quite realistic in the
recent years. For instance, it is possible to realize multi-
level systems in terms of the orbital angular momentum of
photons, instead of the more standard polarization (qubit)
degree of freedom [27–29]. Yet another possibility is to use
the so called multiport beam splitters [30–33].

There are several ways in which this work can be ex-
tended. One is the consideration of noise as as source of
errors during the distillation protocol itself. Another one
is to allow the possibility of having these distillation pro-
tocols for qudits be embedded into a quantum repeater
protocol [15,16].

This work is partially supported by the DGES under contract
BFM2000-1320-C02-01.

Appendix A: General solution
of the distillation recursion relations

In this appendix, we look for more general solutions to
the general distillation recursion relations (23) than those
studied in Section 3. To this end, it is convenient to intro-
duce auxiliary variables g

(n)
kj defined by

g
(n)
kj =

D−1∑
k′=0

g
(n−1)
k�k′jg

(n−1)
k′j , g

(0)
kj = q

(0)
kj , (A.1)

so that the real weights q
(n)
kj are related to these auxiliary

variables as

q
(n)
kj :=

g
(n)
kj∑D−1

l,i=0 g
(n)
li

· (A.2)

Thus, g
(n)
kj are unnormalized probability weights. The re-

cursion relations they satisfy can be read as follows (A.1):
for a fixed second index j, the unnormalized weights g

(n)
kj

at the step n of the distillation process are obtained as the
convolution over the first indices k of the unnormalized
weights g

(n−1)
kj in an earlier step. This fact calls for the in-

troduction of the Fourier transform in order to analyze the
relations (A.1). Let us introduce the new variables R

(n)
j

defined as

R
(n)

k̂j
:=

D−1∑
k=0

e
2πik̂k

D g
(n)
kj . (A.3)

Now, using the properties of the convolution and the
Fourier transform it is immediate to arrive at a simpler
recursion relation

R
(n)

k̂j
=
[
R

(n−1)

k̂j

]2
, (A.4)

which can be iterated all the way down to the initial step

R
(n)

k̂j
=
[
R

(0)

k̂j

](2n)

. (A.5)

Fourier transforming back to the unnormalized variables,
we get

g
(n)
kj =

1
D

D−1∑
k̂=0

e−
2πikk̂

D

[
D−1∑
k′=0

e
2πik̂k′

D q
(0)
k′j

](2n)

, (A.6)

from which we also obtain the normalized probability
weights q

(n)
kj upon normalization (A.2). In particular, for

the case of qubits treated in Section 2, D = 2 and if we
also restrict ourselves to weights of the form q00 = F, q01 =
1−F, q10 = q11 = 0, we again obtain from the general so-
lution (A.6) the simple recursion relation in equation (7).
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